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Key Takeaways

1. Models always perform worse in production than in development

2. Deployment standards are very young, we’re not mature yet and 
competence is missing

3. A successful ML deployment consists of ~20% model development



Example ML Project

• Compile process, data exploration, training regiment, and final model 
performance into a report
• E.g., a Jupyter notebook

• This is a common procedure in many company internships as well, 
although you are not guaranteed a clean dataset
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• Remove outliers
or null data

• Normalize data

• The fun part!
• Choose the best model with K-fold cross validation
• Run a grid search over hyperparameters
• Try several different types of models



Next Steps

• Let’s say the model performance is great and we want to deploy the 
model in production. How should we do this?

• We’d need:
• A service users can interact with

• The model needs to be hosted somewhere

• We want to monitor model performance

• We’d need to be robust to failures

• We might need to handle multiple requests at the same time

• And more…



Challenges

• Industry Issues
• Lack of competence

• Lack of standardization

• Technical Issues
• Technical debt – the challenges with data

• Data drift

• Monitoring & alarms

• Retraining poorly performing models

• Etc…



Industry Challenges
• Recent work in MLOps has addressed many modern 

concerns of ML deployment
• The competence needed in a team is still very high
• Standardization is still weak
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Technical Issues

• Technical debt
• Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., ... & 

Dennison, D. (2015). Hidden technical debt in machine learning systems. 
Advances in neural information processing systems, 28, 2503-2511.

• Key point: Data Dependencies Cost More than Code Dependencies

• Feedback loops

• Data drift:
• A model trained on recent trends will perform very poorly on new data

• Automated retraining needs to be set up for situations like this
• What do we do if the retrained models lose performance?



Technical Issues

• Performance of production models is always worse…
• Outliers that are removed during training now contribute to either poor prediction 

quality or poor data coverage
• Bias during model development (even with cross-validation) is very common

• Lack of interpretability
• Poorly performing models which provide no explanation for their prediction leads to 

a lack of trust

• Scalability
• Scenario: I need to query my 2GB language model 1000 times per second ☺
• How can we achieve this? Often times simpler models are the easiest answer

• Baier, L., Jöhren, F., & Seebacher, S. (2019). Challenges in the deployment 
and operation of machine learning in practice.



Unseen Difficulties in Machine Learning

• A high performing model does not indicate a valuable model
• This is often lost in translation. Are you really solving a problem that people

find valuable?
• If so, what KPIs can you identify and optimize for?

• Requires constant feedback with customers throughout development

• Designing user interaction with a machine learning model is not trivial
• How should we present model output?

• If requests are made implicitly (e.g., when loading a webpage), how is this 
handled on the front end?

• What sort of language do you use?

• Model security



Conclusions

• Modelling is only a small part of machine learning solutions

• Existing industry standards for ML deployment are very young
• Very high competence required

• There are numerous technical issues to account for when deploying 
ML models
• Data drift

• Monitoring

• Interpretability


