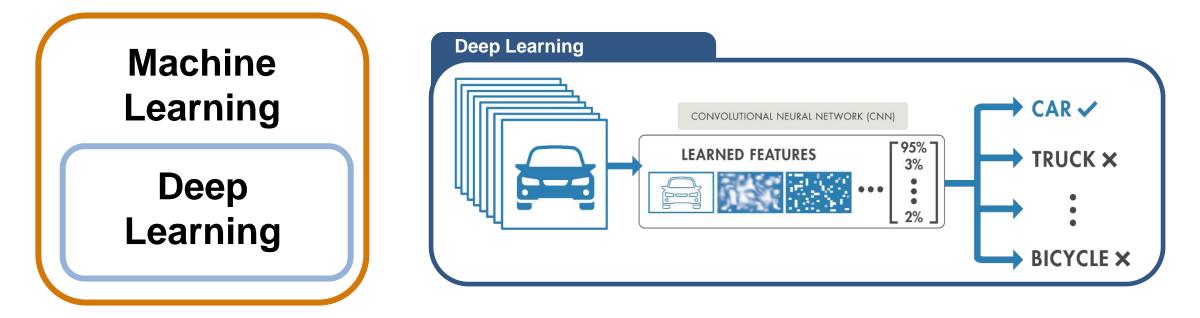


Building Neural Networks with MATLAB

Simon Thor MATLAB Student Ambassador

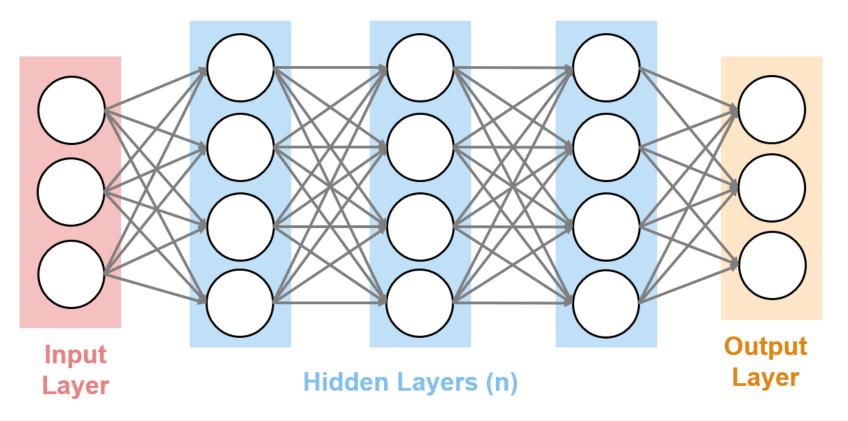
© 2019 The MathWorks, Inc.

Poll


- How familiar are you with neural networks and MATLAB?

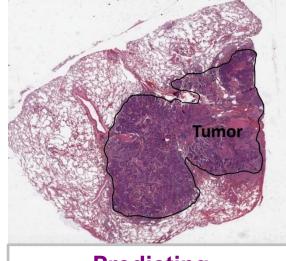
https://menti.com Code: 7390 7670

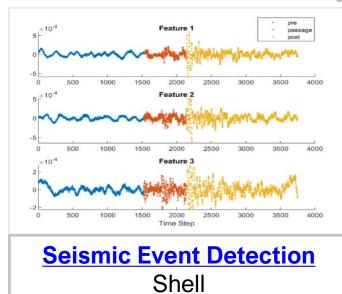
What is Deep Learning?


- Subset of machine learning with automatic feature extraction
 - Learns features and tasks directly from data
- Accuracy can surpass traditional machine learning algorithms
- Typically requires more data than other machine learning models

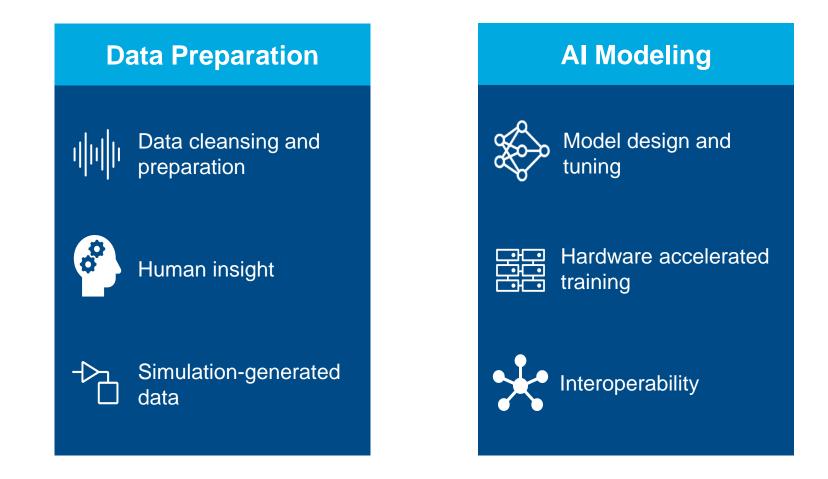
Deep Learning Models are Neural Networks

- Deep neural networks have many layers
- Data is passed through the network, and the layer parameters are updated (training)


MATLAB Deep Learning examples


Automatic Defect Detection Airbus

Particle/event identification LHC, CERN

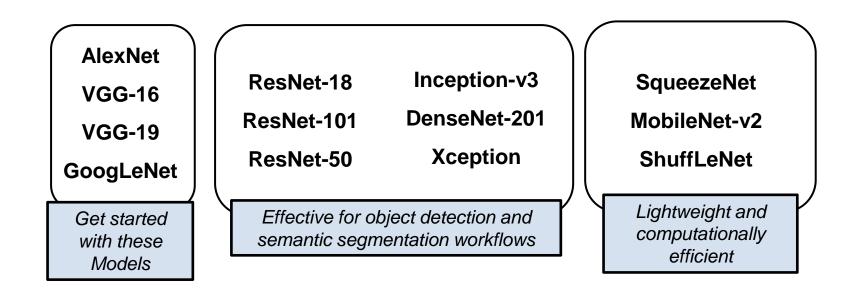


Predicting gastrointestinal cancer Germany

Deep Learning Workflow

Deployment

Embedded devices



Edge, cloud, desktop

Pretrained Models

- Pretrained models have predefined layer orders and parameter values
- Can be used directly for inference (AlexNet Example)

Full list of models available <u>HERE</u>

What if pretrained models aren't enough?

Transfer learning

Take a pretrained model and modify it slightly

Pros

- Faster training
- Less data needed
- Most of the work already done

Cons

- Less customizable
- Must have a good pretrained model

Train from scratch

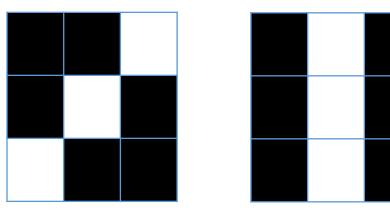
Make and train a neural network from scratch

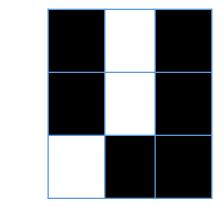
Pros

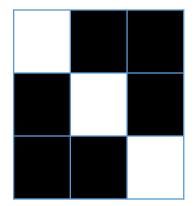
- Fully customizable
- For specialized tasks
- You learn more about neural networks

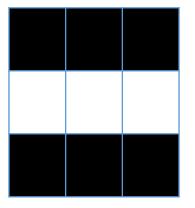
Cons

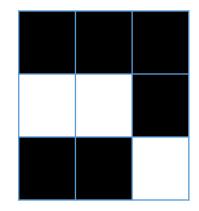
- More data needed
- Slower training time


Creating Layer Architectures

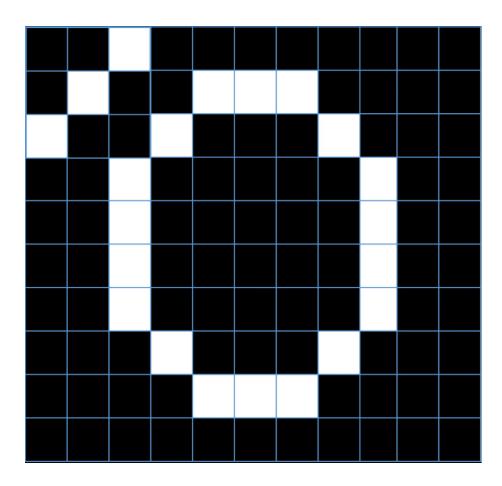

- Convolution Neural Networks CNN
- Special layer combinations that make them adept at classifying images
- Convolution Layer
- ReLU Layer
- Max Pooling Layer

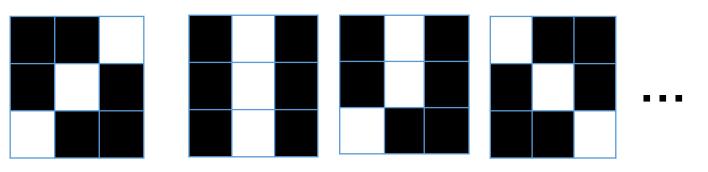



Convolution Layers Search for Patterns

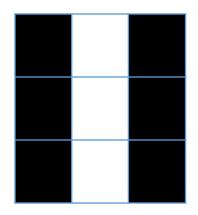


These patterns would be common in the number 0





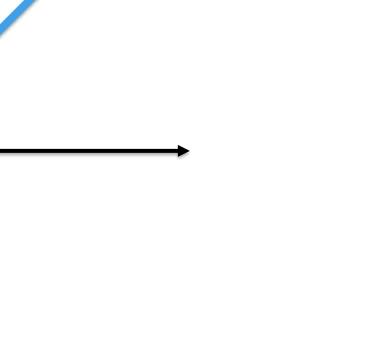
All patterns are compared to the patterns on a new image



- Pattern starts at left corner Perform comparison Slide over one pixel
- Reach end of image
- Repeat for next pattern

Good pattern matching in convolution improves chances that object will classify properly

- This image would not match well against the patterns for the number zero
- It would only do very well against this pattern



Rectified Linear Units Layer (ReLU)

Converts negative numbers to zero

-1	0	5	4
3	-4	-8	3
1	4	6	-5
-2	-5	4	1

Max Pooling is a down-sampling operation

Shrink large images while preserving important information

1	0	5	4			
3	4	8	3	2x2 filters	4	8
1	4	6	5	Stride Length = 2	5	6
2	5	4	1			

How Do I know Which Layers to Use?

Feature Extraction - Images

- 2D and 3D convolution
- Transposed convolution
- Transformer

Sequence Data

Signal, Text, Numeric

- LSTM
- Recurrent neural networks
- Word Embedding

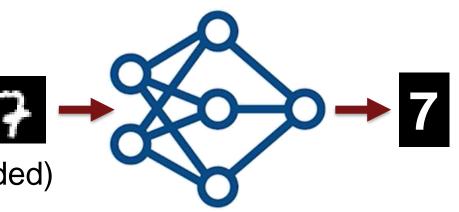
Activation Functions

- ReLU
- Tanh
- SeLU

Normalization

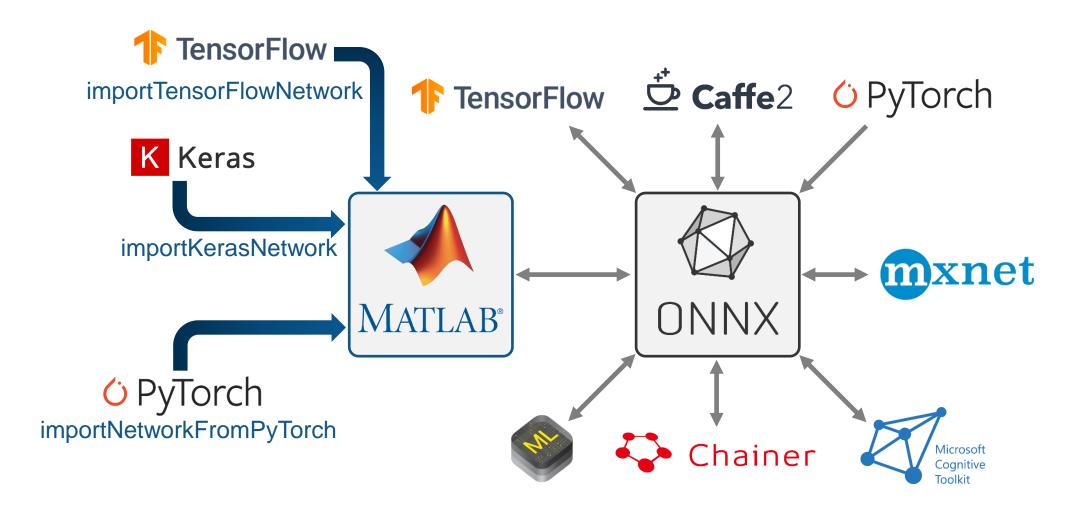
- Dropout
- Batch normalization
- Skip connections

Research papers, <u>doc examples</u>, and <u>documentation on network layers</u> can provide guidelines for creating architecture

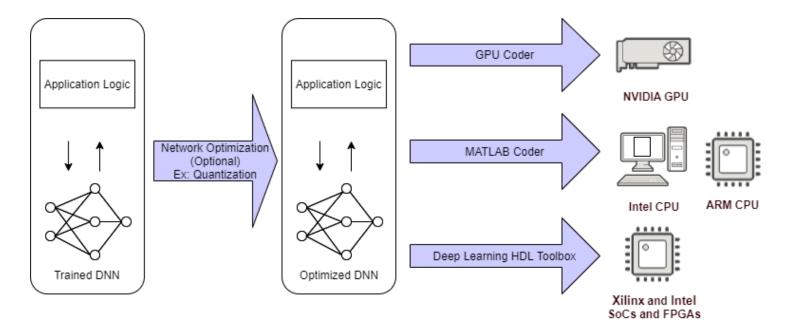

Demo - MNIST

Purpose:

- Learn how to create and train deep neural network
- Deep learning toolbox
- Use MATLAB's Deep Network Designer
- Explore hyperparameters
- Follow along in the demo!
- Run from MATLAB Online (no installation needed)
- Link available on the KTHAIS website and in the Facebook event page



Source: MNIST handwritten digit database


Import and Export Models to/from other Frameworks

Code Generation for Deep Learning

- Generate CUDA, C/C++ code
- Compress model
 - Reduce precision of floats, ints
 - Approximate convolutions
- Deploy models on GPUs, CPUs, FPGAs

Spend less time preprocessing and labeling data

Synchronize disparate time series, filter noisy signals, automate labeling of video, and more.

Use labeling apps for deep learning workflows like semantic segmentation

New! Medical imaging toolbox

Experiment Manager – Run, Track, and Analyze Multiple Deep Learning Experiments

• •			E	xperiment Manager					
EXPERIMENT MANAGER									?
New Save FiLE ENVIRONMENT RUN EXPERIMENT BROWSER O	Plot	Matrix 👻 EW RESULTS	Filter Export FILTER EXPORT						
DigitsClassifier A Baseline Establishment	- Result	Details							
Baseline Establishment Sweep Initial Learning Rate Baseline run AB Baseline Tuning Result1 (Running) Larger Initial Learning Rate Range	Baseline (<u>View Ex</u>	Tuning periment Sourc		20, 12:53:36 PM	Complete 7 Running 1		Stopped 0 Queued 8	❶ Erro Ⅹ Can	celed 0
Sweep Learning Rate Conv Size and	Trial	Status	Progress	Elapsed Time	mylnitialLearn	convFilterSize	Training Accu	Training Loss	Validation Ac
Add Conv-Batch-ReLu Banks	1	Complete	100.0%		-	3.0000	12.5000	2.6441	10.
Vary Filter Size of First Conv2D Layer Train Validation Split Study	2	Complete	100.0%			3.0000	25.7813	2.1228	20.
	3	Complete	100.0%			3.0000	64.8438	1.0878	42.
	4	Complete	100.0%			3.0000	90.6250	0.4648	49.
	5	 Complete 	100.0%			4.0000	11.7188	2,4967	6.
	6	Complete	100.0%	0 hr 0 min 15 sec	1.0000e-5	4.0000	23.4375	2.1213	14.
	7	Complete	100.0%	0 hr 0 min 17 sec	0.0001	4.0000	72.6563	1.0283	39.
	8	O Running	30.7%	0 hr 0 min 4 sec	0.0005	4.0000			
	9	는 Queued	0.0%		1.0000e-6	5.0000			
	10	E Queued	0.0%		1.0000e-5	5.0000			
	11	E Queued	0.0%		0.0001	5.0000			
	12	E Queued	0.0%		0.0005	5.0000			
	13	E Queued	0.0%		1.0000e-6	6.0000			
	14	E Queued	0.0%		1.0000e-5	6.0000			
	15	E Queued	0.0%		0.0001	6.0000			
	16	E Queued	0.0%		0.0005	6.0000			

University

Self-paced Online Courses

Getting Started (12)

MATLAB (4)

Simulink (5)

Al, Machine Learning, and Deep Learning (5)

Math and Optimization (6)

Image and Signal Processing (3)

Explore over 50 virtual and inperson **classroom courses**

AI, Machine Learning, and Deep Learning

Machine Learning Onramp 40% 6 modules | 2 hours | Languages

Learn the basics of practical machine learning methods for classification problems.

Machine Learning with MATLAB

7 modules | 12 hours | Languages Explore data and build predictive models.

"The interactive MATLAB tutorials were perfect for engaging students and getting them up to speed quickly."

-Dr. Yu-li Wang, Carnegie Mellon

Deep Learning Onramp

5 modules | 2 hours | Languages

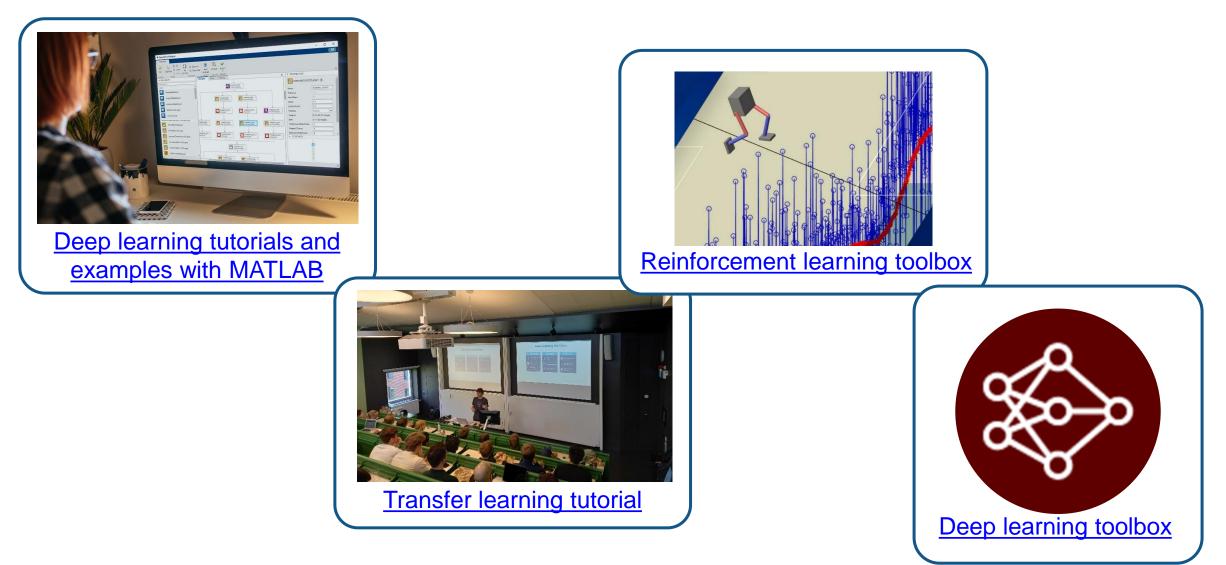
Get started quickly using deep learning methods to perform image recognition.

Deep Learning with MATLAB

13 modules | 8 hours | Languages

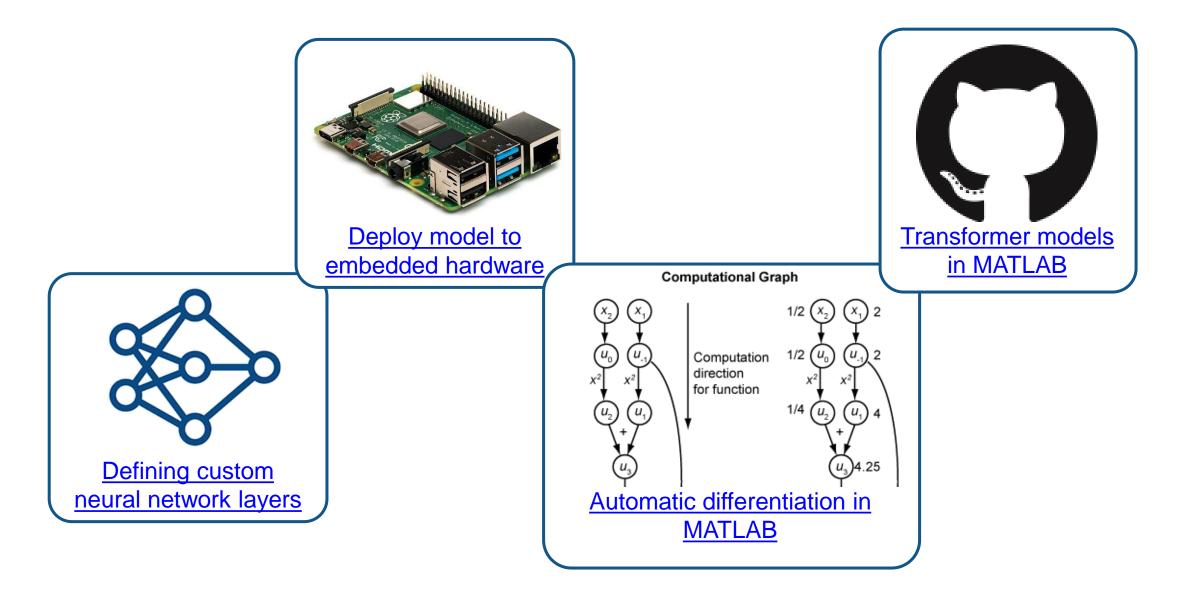
Learn the theory and practice of building deep neural networks with real-life image and sequence data.

Reinforcement Learning Onramp


5 modules | 3 hours | Languages

Master the basics of creating intelligent controllers that learn from experience.

https://matlabacademy.mathworks.com/



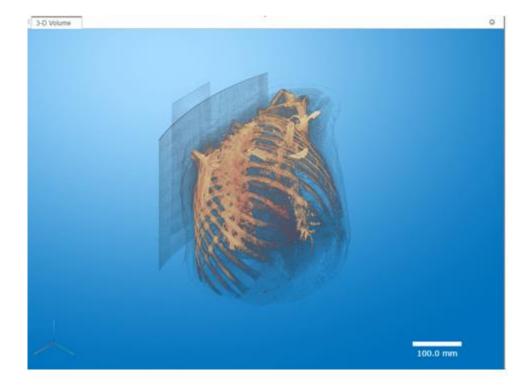
More Deep Learning Resources from MathWorks

Advanced Deep Learning Resources from MathWorks

The Biomassters Challenge

• Estimate the biomass using satellite images

Place	Prize Amount
1st	\$5,000
2nd	\$2,000
3rd	\$1,000
Bonus	\$2,000


- Top user using MATLAB wins \$2000 bonus!
- Join the competition
- Get MATLAB starter code

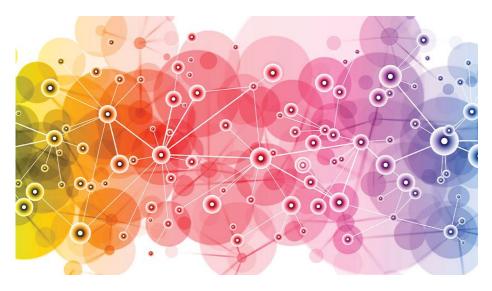
Student interest in AI within Healthcare/Life Sciences

- Survey in collaboration with Karolinska Institute
- https://forms.gle/TDHtbagAnmcvU3Pv9
- Potential future opportunities for working with machine learning and life science

Learn Deep Learning at KTH

- DD2424 Deep learning in data science
- Masters program in machine learning
- KTH AI Society

@matlab_kth



facebook.com/groups/MATLAB.KTH

https://kthais.com

Thank you!

Questions?

Simon Thor MATLAB Student Ambassador

Special thanks to Rohit Agrawal for providing the basis of this presentation

© 2019 The MathWorks, Inc.